Combinatorial problems such as combinatorial optimization and constraint satisfaction problems arise in decision-making across various fields of science and technology. In real-world applications, when multiple optimal or constraint-satisfying solutions exist, enumerating all these solutions is often desirable, as it provides flexibility in decision-making. However, combinatorial problems and their enumeration versions pose significant computational challenges due to combinatorial explosion. To address these challenges, we propose enumeration algorithms for combinatorial optimization and constraint satisfaction problems using Ising machines. Ising machines are specialized devices designed to efficiently solve combinatorial problems by exploring the energy landscape of an Ising model. Ising machines typically sample lower-energy solutions with higher probability. Our enumeration algorithms repeatedly perform such sampling to collect all desirable solutions. The crux of the proposed algorithms lies in their stopping criteria for sampling-based energy landscape exploration, which are derived from probability theory. In particular, the proposed algorithms have theoretical guarantees that the failure probability of enumeration is bounded above by a user-specified value, provided that lower-cost solutions are sampled more frequently and equal-cost solutions are sampled with equal probability. Many physics-based Ising machines are expected to (approximately) satisfy these conditions. As a demonstration, we applied our algorithm using simulated annealing to maximum clique enumeration on random graphs. We found that our algorithm enumerates all maximum cliques in large, dense graphs faster than a conventional branch-and-bound algorithm specifically designed for maximum clique enumeration. These findings underscore the effectiveness and potential of our proposed approach.


翻译:组合优化与约束满足问题等组合问题广泛存在于科学与技术领域的决策过程中。在实际应用中,当存在多个最优解或满足约束的解时,枚举所有这些解通常是可取的,因为它为决策提供了灵活性。然而,由于组合爆炸,组合问题及其枚举版本带来了巨大的计算挑战。为应对这些挑战,我们提出了利用伊辛机解决组合优化与约束满足问题的枚举算法。伊辛机是专门设计用于通过探索伊辛模型的能量景观来高效解决组合问题的设备。伊辛机通常以更高概率采样低能量解。我们的枚举算法通过重复执行此类采样来收集所有期望的解。所提出算法的核心在于其基于采样的能量景观探索的停止准则,这些准则源自概率论。特别地,只要低成本解被更频繁地采样且等成本解以相等概率被采样,所提出的算法在理论上保证了枚举失败的概率不超过用户指定的阈值。许多基于物理的伊辛机预期(近似)满足这些条件。作为演示,我们使用模拟退火将算法应用于随机图上的最大团枚举。我们发现,与专门为最大团枚举设计的传统分支定界算法相比,我们的算法在大型稠密图中枚举所有最大团的速度更快。这些发现凸显了我们所提出方法的有效性和潜力。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【ACL2024】语言模型对齐的不确定性感知学习
专知会员服务
25+阅读 · 2024年6月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
11+阅读 · 2021年11月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2024】语言模型对齐的不确定性感知学习
专知会员服务
25+阅读 · 2024年6月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
11+阅读 · 2021年11月28日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员