Coordinating workflows across complex systems remains a central challenge in safety-critical environments such as scientific facilities. Language-model-driven agents offer a natural interface for these tasks, but existing approaches often lack scalability, reliability, and human oversight. We introduce the Osprey Framework, a domain-agnostic, production-ready architecture for scalable agentic systems that integrate conversational context with robust tool orchestration across safety-critical domains. Our framework provides: (i) dynamic capability classification to select only relevant tools; (ii) plan-first orchestration with explicit dependencies and optional human approval; (iii) context-aware task extraction that combines dialogue history with external memory and domain resources; and (iv) production-ready execution with checkpointing, artifact management, and modular deployment. We demonstrate its versatility through two case studies: a deployment at the Advanced Light Source particle accelerator and a tutorial-style wind farm monitoring example. These results establish Osprey as a reliable and transparent framework for agentic systems across diverse high-stakes domains.
翻译:在科学装置等安全关键环境中,协调复杂系统间的工作流仍是核心挑战。语言模型驱动的智能体为这类任务提供了自然的交互界面,但现有方法往往缺乏可扩展性、可靠性与人工监督机制。本文提出Osprey框架——一种领域无关、可用于生产环境的可扩展智能体系统架构,它能在安全关键领域中将对话上下文与鲁棒的工具编排相融合。该框架具备以下特性:(i)动态能力分类机制,仅筛选相关工具;(ii)基于显式依赖关系与可选人工审批的规划优先编排策略;(iii)融合对话历史、外部记忆及领域资源的上下文感知任务提取功能;(iv)支持检查点、工件管理与模块化部署的生产级执行能力。我们通过两个案例研究验证其通用性:在先进光源粒子加速器的实际部署,以及教程风格的风电场监控示例。实验结果表明,Osprey能成为跨领域高风险场景中可靠且透明的智能体系统框架。