Statistical independence and conditional independence are two fundamental concepts in statistics and machine learning. Copula Entropy is a mathematical concept defined by Ma and Sun for multivariate statistical independence measuring and testing, and also proved to be closely related to conditional independence (or transfer entropy). As the unified framework for measuring both independence and causality, CE has been applied to solve several related statistical or machine learning problems, including association discovery, structure learning, variable selection, and causal discovery. The nonparametric methods for estimating copula entropy and transfer entropy were also proposed previously. This paper introduces copent, the R package which implements these proposed methods for estimating copula entropy and transfer entropy. The implementation detail of the package is introduced. Three examples with simulated data and real-world data on variable selection and causal discovery are also presented to demonstrate the usage of this package. The examples on variable selection and causal discovery show the strong ability of copent on testing (conditional) independence compared with the related packages. The copent package is available on the Comprehensive R Archive Network (CRAN) and also on GitHub at https://github.com/majianthu/copent.


翻译:统计独立和有条件独立是统计和机器学习的两个基本概念。Copula Entropy是一个数学概念,由Ma和Sun为多变量统计独立度和测试而定义,也证明与有条件独立(或转移酶)密切相关。作为衡量独立性和因果关系的统一框架,CE已经用于解决若干相关的统计或机器学习问题,包括协会发现、结构学习、变量选择和因果发现。以前也曾提出过估算相交录和传输酶的非参数性方法。本文介绍了用于估算相交录的R软件,即采用这些估算相交录和传输酶的拟议方法的R软件包。介绍了该软件包的实施细节。还介绍了三个模拟数据和真实世界变量选择和因果发现数据的例子,以证明该软件包的使用情况。关于可变选择和因果发现的例子表明,与相关软件包相比,共同测试(有条件)独立度的能力很强。CR档案综合网络(CRAAN)和GitHububub(https://github.com/majiant/copent/copent) 。

1
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员