The rapid adoption of online social media platforms has transformed the way of communication and interaction. On these platforms, discussions in the form of trending topics provide a glimpse of events happening around the world in real-time. Also, these trends are used for political campaigns, public awareness, and brand promotions. Consequently, these trends are sensitive to manipulation by malicious users who aim to mislead the mass audience. In this article, we identify and study the characteristics of users involved in the manipulation of Twitter trends in Pakistan. We propose 'Manipify', a framework for automatic detection and analysis of malicious users for Twitter trends. Our framework consists of three distinct modules: i) user classifier, ii) hashtag classifier, and ii) trend analyzer. The user classifier introduces a novel approach to automatically detect manipulators using tweet content and user behaviour features. Also, the module classifies human and bot users. Next, the hashtag classifier categorizes trending hashtags into six categories assisting in examining manipulators behaviour across different categories. Finally, the trend analyzer module examines users, hashtags, and tweets for hashtag reach, linguistic features and user behaviour. Our user classifier module achieves 0.91 accuracy in classifying the manipulators. We further test Manipify on the dataset comprising of 665 trending hashtags with 5.4 million tweets and 1.9 million users. The analysis of trends reveals that the trending panel is mostly dominated by political hashtags. In addition, our results show a higher contribution of human accounts in trend manipulation as compared to bots. Furthermore, we present two case studies of hashtag-wars and anti-state propaganda to implicate the real-world application of our research.
翻译:在线社交媒体平台的快速采用改变了沟通和互动的方式。在这些平台上,以趋势主题形式进行的讨论,为世界各地实时发生的事件提供了一瞥。此外,这些趋势被用于政治运动、公众意识和品牌宣传。因此,这些趋势对恶意用户操纵旨在误导群众的恶意用户十分敏感。在本篇文章中,我们确定并研究参与操纵巴基斯坦推特趋势的用户特点。我们提议“操纵”这一框架,用于自动检测和分析恶意用户以达到推特趋势。我们的框架由三个不同的模块组成:i)用户分类、ii) 标签分类和ii) 趋势分析员。这些趋势被用于开展政治运动、公众意识、公众意识、品牌分析员采用新的方法,利用推特内容和用户行为特征自动检测操纵者。此外,标签分类将趋势标签分类分为六类,协助审查不同类别的操纵者行为。趋势分析器模块对用户、语言特征和用户行为进行测试。我们用户分类的用户分类结构分类模块,将我们当前5.8万项数据格式的精确性分析,将我们标定了我们标定的60万项数据库中的标本,我们标定了我们标本的标本的标本的标本,我们标本的标本的标本的标本的标本的标本的标本的标本的标本,我们标本的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本将显示的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本的标本。