Federated learning (FL) is a privacy-promoting framework that enables potentially large number of clients to collaboratively train machine learning models. In a FL system, a server coordinates the collaboration by collecting and aggregating clients' model updates while the clients' data remains local and private. A major challenge in federated learning arises when the local data is heterogeneous -- the setting in which performance of the learned global model may deteriorate significantly compared to the scenario where the data is identically distributed across the clients. In this paper we propose FedDPMS (Federated Differentially Private Means Sharing), an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations communicated by a trusted server. Such augmentation ameliorates effects of data heterogeneity across the clients without compromising privacy. Our experiments on deep image classification tasks demonstrate that FedDPMS outperforms competing state-of-the-art FL methods specifically designed for heterogeneous data settings.
翻译:联邦学习(FL)是一个促进隐私的框架,它使潜在的大量客户能够合作培训机器学习模式。在FL系统中,服务器通过收集和汇总客户的模型更新,协调协作,同时客户的数据仍然是本地和私有的。当当地数据多种多样时,就会产生一个重大挑战。当当地数据具有多样性时,联邦学习(FL)就会产生一个重大挑战。在这种背景下,学习的全球模型的性能可能大大恶化,而数据在客户之间分布完全相同。在本文中,我们建议FDDPMS(FFedDPMS(Federal differentive Prical Resolublicity shablication)是一种FL算法,在这种算法中,客户采用变式自动计算器,使用由信任的服务器传送的不同私式潜在数据表达方式合成的数据来增强本地数据集。这种增强能力可以提高客户之间数据差异性,同时又不损害隐私。我们在深层图像分类任务方面的实验表明,FDDPMS比为多种数据设置而专门设计的最先进的FL方法更完美。