As a promising 6G enabler beyond conventional bit-level transmission, semantic communication can considerably reduce required bandwidth resources, while its combination with multiple access requires further exploration. This paper proposes a knowledge distillation-driven and diffusion-enhanced (KDD) semantic non-orthogonal multiple access (NOMA), named KDD-SemNOMA, for multi-user uplink wireless image transmission. Specifically, to ensure robust feature transmission across diverse transmission conditions, we firstly develop a ConvNeXt-based deep joint source and channel coding architecture with enhanced adaptive feature module. This module incorporates signal-to-noise ratio and channel state information to dynamically adapt to additive white Gaussian noise and Rayleigh fading channels. Furthermore, to improve image restoration quality without inference overhead, we introduce a two-stage knowledge distillation strategy, i.e., a teacher model, trained on interference-free orthogonal transmission, guides a student model via feature affinity distillation and cross-head prediction distillation. Moreover, a diffusion model-based refinement stage leverages generative priors to transform initial SemNOMA outputs into high-fidelity images with enhanced perceptual quality. Extensive experiments on CIFAR-10 and FFHQ-256 datasets demonstrate superior performance over state-of-the-art methods, delivering satisfactory reconstruction performance even at extremely poor channel conditions. These results highlight the advantages in both pixel-level accuracy and perceptual metrics, effectively mitigating interference and enabling high-quality image recovery.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员