Nonparametric and machine learning methods are flexible methods for obtaining accurate predictions. Nowadays, data sets with a large number of predictors and complex structures are fairly common. In the presence of item nonresponse, nonparametric and machine learning procedures may thus provide a useful alternative to traditional imputation procedures for deriving a set of imputed values. In this paper, we conduct an extensive empirical investigation that compares a number of imputation procedures in terms of bias and efficiency in a wide variety of settings, including high-dimensional data sets. The results suggest that a number of machine learning procedures perform very well in terms of bias and efficiency.


翻译:非参数和机器学习方法是获得准确预测的灵活方法。如今,拥有大量预测器和复杂结构的数据集相当普遍,因此,在出现不答复项目的情况下,非参数和机器学习程序可能为得出一套估算值的传统估算程序提供有用的替代方法。在本文件中,我们进行了广泛的实证调查,从包括高维数据集在内的各种环境中的偏差和效率的角度比较了一些估算程序。结果显示,一些机器学习程序在偏差和效率方面表现良好。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员