This paper introduces a Compressed Sensing (CS) estimation scheme for Orthogonal Time Frequency Space (OTFS) channels with sparse multipath. The OTFS waveform represents signals in a two dimensional Delay-Doppler (DD) orthonormal basis. The proposed model does not require the assumption that the delays are integer multiples of the sampling period. The analysis shows that non-integer delay and Doppler shifts in the channel cannot be accurately modelled by integer approximations. An Orthogonal Matching Pursuit with Binary-division Refinement (OMPBR) estimation algorithm is proposed. The proposed estimator finds the best channel approximation over a continuous DD dictionary without integer approximations. This results in a significant reduction of the estimation normalized mean squared error with reasonable computational complexity.
翻译:本文介绍一个具有多路径分散的 OTTFS 波形表示二维延迟多普勒(DD) 正正态基础的信号。 拟议的模型并不要求假设延迟是取样期的整数倍数。 分析显示, 光速近比无法准确模拟频道中非整数延迟和多普勒移动。 提出了与二进制调整( OMPBR) 估计算法匹配的正向匹配。 提议的估算器在连续的 DDD字典上找到最佳的频道近似值, 但没有整数近似值。 这导致大幅降低估算的正常平均正方差, 且计算复杂度合理 。