The optimal design of the energy-efficient multiple-input multiple-output (MIMO) aided uplink ultra-reliable low-latency communications (URLLC) system is an important but unsolved problem. For such a system, we propose a novel absorbing-Markov-chain-based analysis framework to shed light on the puzzling relationship between the delay and reliability, as well as to quantify the system energy efficiency. We derive the transition probabilities of the absorbing Markov chain considering the Rayleigh fading, the channel estimation error, the zero-forcing multi-user-detection (ZF-MUD), the grant-free access, the ACK-enabled retransmissions within the delay bound and the interactions among these technical ingredients. Then, the delay-constrained reliability and the system energy efficiency are derived based on the absorbing Markov chain formulated. Finally, we study the optimal number of user equipments (UEs) and the optimal number of receiving antennas that maximize the system energy efficiency, while satisfying the reliability and latency requirements of URLLC simultaneously. Simulation results demonstrate the accuracy of our theoretical analysis and the effectiveness of massive MIMO in supporting large-scale URLLC systems.


翻译:对于这样一个系统,我们提议一个基于吸收链的新型吸收- Markov-链式分析框架,以揭示延迟和可靠性之间的模糊关系,并量化系统的能源效率。我们从吸收Markov链的过渡概率中得出吸收Markov链的最佳概率,考虑到Raylei的淡化、频道估计误差、零强制多用户探测(ZF-MUD)、无赠款访问、在延迟限制范围内由ACK带动的再传输以及这些技术要素之间的相互作用。然后,延迟限制的可靠性和系统能源效率是根据所拟订的吸收Markov链得出的。最后,我们研究用户设备的最佳数量和接收天线的最佳数量,以最大限度地提高系统的能源效率,同时满足URLC的可靠性和耐久性要求。模拟结果显示我们大规模LCLC的理论性分析的准确性。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
ICLR 2022接受论文列表出炉!1095 篇论文都在这了!
专知会员服务
75+阅读 · 2022年1月30日
AAAI 2022接收论文列表发布,1349篇论文都在这了!
专知会员服务
144+阅读 · 2022年1月11日
专知会员服务
91+阅读 · 2021年6月3日
专知会员服务
25+阅读 · 2021年4月2日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员