We introduce and explain key relations between a posteriori error estimates and subspace correction methods viewed as preconditioners for problems in infinite dimensional Hilbert spaces. We set the stage using the Finite Element Exterior Calculus and Nodal Auxiliary Space Preconditioning. This framework provides a systematic way to derive explicit residual estimators and estimators based on local problems which are upper and lower bounds of the true error. We show the applications to discretizations of $\delta d$, curl-curl, grad-div, Hodge Laplacian problems, and linear elasticity with weak symmetry. We also provide a new regular decomposition for singularly perturbed H(d) norms and parameter-independent error estimators. The only ingredients needed are: well-posedness of the problem and the existence of regular decomposition on continuous level.
翻译:我们引入并解释事后误差估计与亚空间校正方法之间的关键关系,这些方法被视为无限维度希尔伯特空间问题的先决条件。我们使用“精度外外微积分”和“交点辅助空间预设”来设置舞台。这个框架提供了一种系统的方法,根据真实误差的上下两侧的局部问题来得出明确的剩余估计器和估计器。我们展示了用于将$\delta d$、 curl-curl、 grad-div、 Hodge Laplaceian 问题和微度对称线弹性的分解法的应用。我们还提供了一种新规则的常规分解装置,用于单倍受扰动的 H(d) 规范以及参数独立的误测器。所需要的唯一要素是:问题的准确性和在连续水平上存在常规分解。