We propose a new technique based on program synthesis for automatically generating visualizations from natural language queries. Our method parses the natural language query into a refinement type specification using the intents-and-slots paradigm and leverages type-directed synthesis to generate a set of visualization programs that are most likely to meet the user's intent. Our refinement type system captures useful hints present in the natural language query and allows the synthesis algorithm to reject visualizations that violate well-established design guidelines for the input data set. We have implemented our ideas in a tool called Graphy and evaluated it on NLVCorpus, which consists of 3 popular datasets and over 700 real-world natural language queries. Our experiments show that Graphy significantly outperforms state-of-the-art natural-language-based visualization tools, including transformer and rule-based ones.
翻译:我们建议一种基于程序合成的新技术,用于从自然语言查询中自动生成可视化。我们的方法将自然语言查询转换成一种精细的型号规格,使用意向和绘图范式,并利用类型导向合成生成一套最有可能满足用户意图的可视化程序。我们的精细类型系统捕捉自然语言查询中的有用提示,使合成算法能够拒绝违反既定输入数据集设计指南的可视化。我们用名为“图形”的工具落实了我们的想法,并在NLVCorpus上对它进行了评估,NLVCorpus由3个流行数据集和700多个真实世界自然语言查询组成。我们的实验显示,“图形”明显地超越了最先进的以自然语言为基础的可视化工具,包括变压器和基于规则的工具。