Adversarial transferability enables black-box attacks on unknown victim deep neural networks (DNNs), rendering attacks viable in real-world scenarios. Current transferable attacks create adversarial perturbation over the entire image, resulting in excessive noise that overfit the source model. Concentrating perturbation to dominant image regions that are model-agnostic is crucial to improving adversarial efficacy. However, limiting perturbation to local regions in the spatial domain proves inadequate in augmenting transferability. To this end, we propose a transferable adversarial attack with fine-grained perturbation optimization in the frequency domain, creating centralized perturbation. We devise a systematic pipeline to dynamically constrain perturbation optimization to dominant frequency coefficients. The constraint is optimized in parallel at each iteration, ensuring the directional alignment of perturbation optimization with model prediction. Our approach allows us to centralize perturbation towards sample-specific important frequency features, which are shared by DNNs, effectively mitigating source model overfitting. Experiments demonstrate that by dynamically centralizing perturbation on dominating frequency coefficients, crafted adversarial examples exhibit stronger transferability, and allowing them to bypass various defenses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月13日
Arxiv
0+阅读 · 2024年2月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
13+阅读 · 2020年10月19日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年2月13日
Arxiv
0+阅读 · 2024年2月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
13+阅读 · 2020年10月19日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员