This article provides a link diagram to visualize relations between two ordered sets representing precedences on decision-making options or solutions to strategic form games. The diagram consists of floating loops whose any two loops cross just twice each other. As problems formulated by relations between two ordered sets, I give two examples: visualizing rankings from pairwise comparisons on the diagram and finding Pareto optimal solutions to a game of prisoners' dilemma. At visualizing rankings, we can see whether a ranking satisfies Condorcet's principle or not by checking whether the top loop is splittable or not. And at finding solutions to the game, when a solution of the game of prisoners' dilemma is Pareto optimal, the loop corresponding to the solution has no splittable loop above it. Throughout the article, I point out that checking the splittability of loops is an essence. I also mention that the diagram can visualize natural transformations between two functors on free construction categories.
翻译:此篇文章提供了一个链接图, 以可视化方式显示两组有秩序的组合之间的关系, 代表决策选项或战略形式游戏解决方案的优先位置。 该图由两组有两圈的浮动环组成, 任何两圈的任意交叉仅是两圈的双圈。 作为两组有秩序的组合所形成的问题, 我举两个例子: 将图表上的对称比较进行可视化, 并找到Pareto最佳的囚犯困境游戏解决方案。 在将排名法进行可视化时, 我们可以看到排名是否满足了 Condorcet 的原则, 而不是通过检查顶圈是否可分化。 在寻找游戏的解决方案时, 当囚犯两难的游戏的解决方案是Pareto最佳的时, 与解决方案相对应的循环在它上面没有可分割的循环。 在整个文章中, 我指出, 检查循环的分割性是一个精髓。 我还提到, 该图表可以直观地显示两个自由建筑类的真菌之间的自然变化。