This paper jointly investigates user association (UA), mode selection (MS), and bandwidth allocation (BA) problems in a novel and practical next-generation cellular network where two modes of semantic communication (SemCom) and conventional bit communication (BitCom) coexist, namely hybrid semantic/bit communication network (HSB-Net). Concretely, we first identify a unified performance metric of message throughput for both SemCom and BitCom links. Next, we comprehensively develop a knowledge matching-aware two-stage tandem packet queuing model and theoretically derive the average packet loss ratio and queuing latency. Combined with several practical constraints, we then formulate a joint optimization problem for UA, MS, and BA to maximize the overall message throughput of HSB-Net. Afterward, we propose an optimal resource management strategy by employing a Lagrange primal-dual method and devising a preference list-based heuristic algorithm. Finally, numerical results validate the performance superiority of our proposed strategy compared with different benchmarks.
翻译:暂无翻译