With the growth of machine learning algorithms with geometry primitives, a high-efficiency library with differentiable geometric operators are desired. We present an optimized Differentiable Geometry Algorithm Library (DGAL) loaded with implementations of differentiable operators for geometric primitives like lines and polygons. The library is a header-only templated C++ library with GPU support. We discuss the internal design of the library and benchmark its performance on some tasks with other implementations.
翻译:随着具有几何原始学的机器学习算法的增长,人们希望有一个拥有不同几何操作员的高效图书馆。 我们展示了一个优化的可区分几何算法图书馆(DGAL ), 里面装满了不同操作员对几何原始学, 如线条和多边形的操作员。 该图书馆是一个只有头版的C++图书馆, 配有 GPU 支持。 我们讨论图书馆的内部设计, 并将它的业绩与其他执行任务基准化 。