This paper makes the opaque data market in the AI economy empirically legible for the first time, constructing a computational testbed to address a core epistemic failure: regulators governing a market defined by structural opacity, fragile price discovery, and brittle technical safeguards that have paralyzed traditional empirics and fragmented policy. The pipeline begins with multi-year fieldwork to extract the market's hidden logic, and then embeds these grounded behaviors into a high-fidelity ABM, parameterized via a novel LLM-based discrete-choice experiment that captures the preferences of unsurveyable populations. The pipeline is validated against reality, reproducing observed trade patterns. This policy laboratory delivers clear, counter-intuitive results. First, property-style relief is a false promise: ''anonymous-data'' carve-outs expand trade but ignore risk, causing aggregate welfare to collapse once external harms are priced in. Second, social welfare peaks when the downstream buyer internalizes the full substantive risk. This least-cost avoider approach induces efficient safeguards, simultaneously raising welfare and sustaining trade, and provides a robust empirical foundation for the legal drift toward two-sided reachability. The contribution is a reproducible pipeline designed to end the reliance on intuition. It converts qualitative insight into testable, comparative policy experiments, obsoleting armchair conjecture by replacing it with controlled evidence on how legal rules actually shift risk and surplus. This is the forward-looking engine that moves the field from competing intuitions to direct, computational analysis.
翻译:本文首次实证揭示了人工智能经济中不透明的数据市场,构建了一个计算测试平台以应对核心认知困境:监管者治理的市场具有结构性不透明、脆弱的价格发现机制和易碎的技术保障措施,这些因素已使传统实证研究陷入瘫痪并导致政策碎片化。该流程始于多年实地调研以提取市场的隐藏逻辑,随后将这些基于现实的行为嵌入高保真度的基于代理的建模(ABM)中,并通过一种基于大型语言模型(LLM)的新型离散选择实验进行参数化,以捕捉无法调查人群的偏好。该流程经过现实验证,能够复现观测到的交易模式。这一政策实验室得出了清晰且反直觉的结果。首先,财产式救济是一种虚假承诺:“匿名数据”豁免条款虽扩大了交易但忽视了风险,一旦外部损害被计入成本,总体福利便会崩溃。其次,当下游购买方完全内化实质性风险时,社会福利达到峰值。这种最低成本规避者方法能激励有效的保障措施,同时提升福利并维持交易,并为法律向双向可达性漂移提供了坚实的实证基础。本研究的贡献在于设计了一个可复现的流程,旨在终结对直觉的依赖。它将定性洞察转化为可检验的、比较性的政策实验,通过提供关于法律规则如何实际转移风险与盈余的受控证据,取代了空想推测。这是推动该领域从相互竞争的直觉转向直接计算分析的前瞻性引擎。