In this paper, we investigate a private and cache-enabled unmanned aerial vehicle (UAV) network for content provision. Aiming at delivering fresh, fair, and energy-efficient content files to terrestrial users, we formulate a joint UAV caching, UAV trajectory, and UAV transmit power optimization problem. This problem is confirmed to be a sequential decision problem with mixed-integer non-convex constraints, which is intractable directly. To this end, we propose a novel algorithm based on the techniques of subproblem decomposition and convex approximation. Particularly, we first propose to decompose the sequential decision problem into multiple repeated optimization subproblems via a Lyapunov technique. Next, an iterative optimization scheme incorporating a successive convex approximation (SCA) technique is explored to tackle the challenging mixed-integer non-convex subproblems. Besides, we analyze the convergence and computational complexity of the proposed algorithm and derive the theoretical value of the expected peak age of information (PAoI) to estimate the content freshness. Simulation results demonstrate that the proposed algorithm can achieve the expected PAoI close to the theoretical value and is more 22.11% and 70.51% energy-efficient and fairer than benchmark algorithms.
翻译:在本文中,我们调查了一个私人和缓存的无人驾驶飞行器(UAV)网络的内容提供。为了向地面用户提供新鲜、公平和节能的内容文件,我们制定了一个联合的UAV缓存、UAV轨迹和UAV传输电力优化问题。这个问题被确认为具有混合内插非convex限制,直接难以解决的顺序决定问题。我们为此提议了一个基于子问题分解和 convex近似技术的新型算法。特别是,我们首先提议通过Lyapunov技术将相继决定问题分解成多个重复的优化子问题。接下来,我们探索一个包含连续的convex近似技术的迭代优化方案,以解决具有挑战性的混合内插非convex次问题。此外,我们分析了拟议算法的趋同和计算复杂性,并得出预期的信息高峰期(PaoI)的理论价值,以估计内容是否新鲜。模拟结果表明,拟议的算法能够实现预期的PAoI的理论效率为70-51 %和较公平的能源水平为22。