Measuring biases of vision systems with respect to protected attributes like gender and age is critical as these systems gain widespread use in society. However, significant correlations between attributes in benchmark datasets make it difficult to separate algorithmic bias from dataset bias. To mitigate such attribute confounding during bias analysis, we propose a matching approach that selects a subset of images from the full dataset with balanced attribute distributions across protected attributes. Our matching approach first projects real images onto a generative adversarial network (GAN)'s latent space in a manner that preserves semantic attributes. It then finds image matches in this latent space across a chosen protected attribute, yielding a dataset where semantic and perceptual attributes are balanced across the protected attribute. We validate projection and matching strategies with qualitative, quantitative, and human annotation experiments. We demonstrate our work in the context of gender bias in multiple open-source facial-recognition classifiers and find that bias persists after removing key confounders via matching. Code and documentation to reproduce the results here and apply the methods to new data is available at https://github.com/csinva/matching-with-gans .
翻译:测量视觉系统在诸如性别和年龄等受保护属性方面的偏差至关重要,因为这些系统在社会上得到广泛使用。然而,基准数据集中各属性之间的重大关联使得很难将算法偏差与数据集偏差区分开来。为了减轻偏差分析期间这种偏差的混淆,我们建议了一种匹配方法,从完整的数据集中选择一组图像,在受保护属性之间均衡分配属性。我们的匹配方法首先将真实图像投放到基因对抗网络(GAN)的潜在空间上,从而保护语义属性。然后,在选定的受保护属性之间的潜在空间中找到图像匹配点,产生一个在受保护属性之间平衡的语义和概念属性的数据集。我们用定性、定量和人文注解实验来验证预测和匹配战略。我们在多源开放源面部识别分类器中展示了性别偏差,发现在通过匹配删除关键断层后,在此处复制结果和对新数据应用方法的偏差仍然存在。 https://github.com/cinsinva/matching-gans。