Nature has found one method of organizing living matter, but maybe other options exist -- not yet discovered -- on how to create life. To study the life "as it could be" is the objective of an interdisciplinary field called Artificial Life (commonly abbreviated as ALife). The word "artificial" refers to the fact that humans are involved in the creation process. The artificial life forms might be completely unlike natural forms of life, with different chemical compositions, and even computer programs exhibiting life-like behaviours.


翻译:自然已经找到了一种组织生命物质的方法, 但也许在如何创造生命方面还存在其他选择( 尚未发现) 。 研究生命“ 可能存在” 是人工生命( 通常缩写为“ ALife ” ) 的跨学科领域的目标。 “ 人工生命”一词是指人类参与创造过程的事实。 人造生命形式可能与自然生命形式完全不同, 化学成分不同, 甚至计算机程序显示类似生命的行为。

0
下载
关闭预览

相关内容

人工生命(Artificial Life)于1993年秋已成为统一的研究人工系统的科学信息交流论坛,具有自然生命系统的行为特征,通过合成或模拟使用计算机(软件),机器人(硬件)和物理化学(人脑)的意义。每一期都有关于人工生命的前沿研究,这些研究将提高我们对生命系统各个方面的认识,如:人工化学和生命的起源、系统与合成生物学、感知,认知和行为、群体的集体行为、进化与生态动力学、开放性和创造性、社会组织与文化演变、对社会及科技的影响、应用于生物学、医学、商业、教育或娱乐。 官网地址:http://dblp.uni-trier.de/db/journals/alife/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
10+阅读 · 2020年11月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年11月24日
Arxiv
10+阅读 · 2020年11月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
8+阅读 · 2018年2月23日
Top
微信扫码咨询专知VIP会员