High-resolution spectroscopic surveys of the Milky Way have entered the Big Data regime and have opened avenues for solving outstanding questions in Galactic Archaeology. However, exploiting their full potential is limited by complex systematics, whose characterization has not received much attention in modern spectroscopic analyses. In this work, we present a novel method to disentangle the component of spectral data space intrinsic to the stars from that due to systematics. Using functional principal component analysis on a sample of $18,933$ giant spectra from APOGEE, we find that the intrinsic structure above the level of observational uncertainties requires ${\approx}$10 Functional Principal Components (FPCs). Our FPCs can reduce the dimensionality of spectra, remove systematics, and impute masked wavelengths, thereby enabling accurate studies of stellar populations. To demonstrate the applicability of our FPCs, we use them to infer stellar parameters and abundances of 28 giants in the open cluster M67. We employ Sequential Neural Likelihood, a simulation-based Bayesian inference method that learns likelihood functions using neural density estimators, to incorporate non-Gaussian effects in spectral likelihoods. By hierarchically combining the inferred abundances, we limit the spread of the following elements in M67: $\mathrm{Fe} \lesssim 0.02$ dex; $\mathrm{C} \lesssim 0.03$ dex; $\mathrm{O}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Ni} \lesssim 0.04$ dex; $\mathrm{Ca} \lesssim 0.05$ dex; $\mathrm{N}, \mathrm{Al} \lesssim 0.07$ dex (at 68% confidence). Our constraints suggest a lack of self-pollution by core-collapse supernovae in M67, which has promising implications for the future of chemical tagging to understand the star formation history and dynamical evolution of the Milky Way.


翻译:高分辨率光谱测量 =67 { 银河系 { 高分辨率光谱调查 { =67 { = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2020年8月3日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Top
微信扫码咨询专知VIP会员