We present NeuroLKH, a novel algorithm that combines deep learning with the strong traditional heuristic Lin-Kernighan-Helsgaun (LKH) for solving Traveling Salesman Problem. Specifically, we train a Sparse Graph Network (SGN) with supervised learning for edge scores and unsupervised learning for node penalties, both of which are critical for improving the performance of LKH. Based on the output of SGN, NeuroLKH creates the edge candidate set and transforms edge distances to guide the searching process of LKH. Extensive experiments firmly demonstrate that, by training one model on a wide range of problem sizes, NeuroLKH significantly outperforms LKH and generalizes well to much larger sizes. Also, we show that NeuroLKH can be applied to other routing problems such as Capacitated Vehicle Routing Problem (CVRP), Pickup and Delivery Problem (PDP), and CVRP with Time Windows (CVRPTW).
翻译:我们介绍NeuroLKH, 这是一种将深层次学习与强大的传统的Lin-Kernighan-Helsgaun(LKH)融合在一起的新型算法, 以解决旅行销售商问题。 具体地说, 我们训练了一个有监督的Sprarse图表网络, 接受精锐分和节点惩罚的无监督的学习。 这对改善LKH的表现至关重要。 NeuroLKH根据SGN的输出, 创造了边缘候选组, 并转变边缘距离, 以指导LKH的搜索进程。 广泛的实验有力地证明, 通过培训一种关于问题范围很广的模型, NeuroLKH 大大优于LKH, 并广泛推广到大得多的大小。 我们还表明, NeuroLKH 可以应用于其他路道问题, 如Capacateed 车辆路由问题(CVRP)、 Pickup和交付问题(PDP), 以及带有时视窗的CVRP 。