We propose Lite-STGNN, a lightweight spatial-temporal graph neural network for long-term multivariate forecasting that integrates decomposition-based temporal modeling with learnable sparse graph structure. The temporal module applies trend-seasonal decomposition, while the spatial module performs message passing with low-rank Top-$K$ adjacency learning and conservative horizon-wise gating, enabling spatial corrections that enhance a strong linear baseline. Lite-STGNN achieves state-of-the-art accuracy on four benchmark datasets for horizons up to 720 steps, while being parameter-efficient and substantially faster to train than transformer-based methods. Ablation studies show that the spatial module yields 4.6% improvement over the temporal baseline, Top-$K$ enhances locality by 3.3%, and learned adjacency matrices reveal domain-specific interaction dynamics. Lite-STGNN thus offers a compact, interpretable, and efficient framework for long-term multivariate time series forecasting.
翻译:我们提出Lite-STGNN,一种用于长期多元预测的轻量级时空图神经网络,它将基于分解的时间建模与可学习的稀疏图结构相结合。时间模块采用趋势-季节性分解,而空间模块则通过低秩Top-$K$邻接学习和保守的逐水平门控进行消息传递,从而实现空间校正以增强强大的线性基线。Lite-STGNN在四个基准数据集上,对于长达720步的预测范围,达到了最先进的精度,同时具有参数高效性,并且训练速度显著快于基于Transformer的方法。消融研究表明,空间模块相比时间基线带来了4.6%的性能提升,Top-$K$增强了3.3%的局部性,并且学习到的邻接矩阵揭示了特定领域的交互动态。因此,Lite-STGNN为长期多元时间序列预测提供了一个紧凑、可解释且高效的框架。