Stance detection (SD) can be considered a special case of textual entailment recognition (TER), a generic natural language task. Modelling SD as TER may offer benefits like more training data and a more general learning scheme. In this paper, we present an initial empirical analysis of this approach. We apply it to a difficult but relevant test case where no existing labelled SD dataset is available, because this is where modelling SD as TER may be especially helpful. We also leverage measurement knowledge from social sciences to improve model performance. We discuss our findings and suggest future research directions.
翻译:标准检测可被视为文字要求识别(TER)的特殊情况,这是一种通用的自然语言任务。将标准测试(TER)模拟自毁(SD)可带来更多培训数据和更一般的学习计划等好处。在本文件中,我们对这一方法提出了初步的经验分析。我们将其应用于一个困难但相关的试验案例,因为没有现有的称为SD数据集,因为这是作为标准测试(TER)模拟自毁(SD)可能特别有帮助的地方。我们还利用社会科学的测量知识来改进模型的性能。我们讨论我们的调查结果并提出未来的研究方向。