The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR's first bug assignment without human intervention happened in April 2019. Our study evaluates the adoption of TRR within its industrial context at Ericsson. Moreover, we investigate 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. We conduct an industrial case study combining interviews with TRR stakeholders, minutes from sprint planning meetings, and bug tracking data. The data analysis includes thematic analysis, descriptive statistics, and Bayesian causal analysis. TRR is now an incorporated part of the bug assignment process. Considering the abstraction levels of the telecommunications stack, high-level modules are more positive while low-level modules experienced some drawbacks. On average, TRR automatically assigns 30% of the incoming bug reports with an accuracy of 75%. Auto-routed TRs are resolved around 21% faster within Ericsson, and TRR has saved highly seasoned engineers many hours of work. Indirect effects of adopting TRR include process improvements, process awareness, increased communication, and higher job satisfaction. TRR has saved time at Ericsson, but the adoption of automated bug assignment was more intricate compared to similar endeavors reported from other companies. We primarily attribute the difference to the very large size of the organization and the complex products. Key facilitators in the successful adoption include a gradual introduction, product champions, and careful stakeholder analysis.


翻译:在大型开发项目中,不断流入的错误报告是一个相当大的挑战。在采矿软件库当代工作启发下,我们设计了一个基于2011-2016年机器学习的原型错误分配解决方案。原型在2017-2018年演变成内部爱立信产品,TRR。TRR的第一次错误分配没有人为干预,发生在2019年4月。我们的研究评估了在Ericsson的工业环境中采用TRR的情况。此外,我们调查了1)TRR在外地的表现如何,2 TRR向Ericsson提供了什么价值,3) TRR对工作方式产生了何种影响。我们开展了一项工业案例研究,其中结合了与TRR利益攸关方的访谈,成功规划会议的会议记录和追踪错误的数据。数据分析包括专题分析、描述性统计数据和Bayesian因果分析。TRR现在是错误分配过程的一部分。考虑到电信堆的抽象程度,高层次模块更积极,而低级模块则有所回溯。平均,TRR会自动将收到的错误报告中的30%的错误报告与75 %的精度引入的精度、印刷版会议记录和错误跟踪数据跟踪分析,主要在TRRWrievalalal的升级的改进过程中,在21 %的升级的升级的改进中,在交易中进行中,在高度的改进中,在高度保存的动作上进行。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月27日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员