When developers investigate a new bug report, they search for similar previously fixed bug reports and discussion threads attached to them. These discussion threads convey important information about the behavior of the bug including relevant \emph{bug-fixing comments}. Often times, these discussion threads become extensively lengthy due to the severity of the reported bug. This adds another layer of complexity, especially if relevant bug-fixing comments intermingle with seemingly unrelated comments. To manually detect these relevant comments among various cross-cutting discussion threads can become a daunting task when dealing with high volume of bug reports. To automate this process, our focus is to initially extract and detect comments in the context of \emph{query relevance}, the use of \emph{positive language}, and \emph{semantic relevance}. Then, we merge these comments in the form of a summary for easy understanding. Specifically, we combine Sentiment Analysis and the TextRank Model with the baseline Vector Space Model (VSM). Preliminary findings indicate that bug-fixing comments tend to be positive and there exists a semantic relevance with comments from other cross-cutting discussion threads. The results also indicate that our combined approach improves overall ranking performance against the baseline VSM.
翻译:当开发者调查新的错误报告时, 他们会搜索相似的先前固定的错误报告, 以及与此相关的讨论线索 。 这些讨论线索会传递关于错误行为的重要信息, 包括相关的 emph{ bug- fixing commentitions} 。 通常, 这些讨论线索会由于被报告的错误的严重性而变得非常冗长。 这增加了另一个复杂层, 特别是如果相关的错误修正评论与似乎无关的评论相交。 在处理大量错误报告时, 手动在各种交叉讨论线索中检测这些相关评论会是一项艰巨的任务 。 如果要将这一过程自动化, 我们的重点是在\ emph{ blog- fix- ference } 、 emph{ sectively 语言} 和\ emph{ semantict reculity} 的背景下, 最初提取并检测并检测并检测到这些评论。 然后, 我们将这些评论以摘要的形式合并起来, 方便理解。 具体地说, 我们把传感器分析 和 TextRank 模型 和 母体空间模型( VSM) 模式( VSM) 。 初步发现, 错误修正 意见会显示, 可能会是肯定的,, 并结合使用其它的 。