Recently, a new concept called multiplicative differential cryptanalysis and the corresponding $c$-differential uniformity were introduced by Ellingsen et al.~\cite{Ellingsen2020}, and then some low differential uniformity functions were constructed. In this paper, we further study the constructions of perfect $c$-nonlinear (PcN) power functions. First, we give a necessary and sufficient condition for the Gold function to be PcN and a conjecture on all power functions to be PcN over $\gf(2^m)$. Second, several classes of PcN power functions are obtained over finite fields of odd characteristic for $c=-1$ and our theorems generalize some results in~\cite{Bartoli,Hasan,Zha2020}. Finally, the $c$-differential spectrum of a class of almost perfect $c$-nonlinear (APcN) power functions is determined.


翻译:最近,Ellingsen et al. ⁇ cite{Ellingsen2020} 引入了一个新的概念,称为多复制式差分加密分析以及相应的美元差异统一性,随后又构建了一些低差异统一功能。在本文中,我们进一步研究了完美无线(PcN)功率功能的构造。首先,我们给黄金函数设定了一个必要和充分的条件,使金函数成为PcN,并对所有功率功能的预测是超过$\gf(2 ⁇ m)的PcN。第二,在奇异特性的限定字段中获得了几类PcN功率功能,并在 " cite{Bartoli,Hasan,Zha20}中概括了我们的一些结果。最后,确定了几乎完美无线(APcN)功率的等级中的美元差异频谱。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
37+阅读 · 2020年3月31日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
37+阅读 · 2020年3月31日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员