Approval of credit card application is one of the censorious business decision the bankers are usually taking regularly. The growing number of new card applications and the enormous outstanding amount of credit card bills during the recent pandemic make this even more challenging nowadays. Some of the previous studies suggest the usage of machine intelligence for automating the approval process to mitigate this challenge. However, the effectiveness of such automation may depend on the richness of the training dataset and model efficiency. We have recently developed a novel classifier named random wheel which provides a more interpretable output. In this work, we have used an enhanced version of random wheel to facilitate a trustworthy recommendation for credit card approval process. It not only produces more accurate and precise recommendation but also provides an interpretable confidence measure. Besides, it explains the machine recommendation for each credit card application as well. The availability of recommendation confidence and explanation could bring more trust in the machine provided intelligence which in turn can enhance the efficiency of the credit card approval process.


翻译:核准信用卡申请是银行家通常定期作出的审查性商业决定之一,由于新申请的卡片数量越来越多,而且在最近的大流行病期间,信用卡账单大量未结清,这在今天甚至更加具有挑战性。以前的一些研究显示,使用机器情报使核准程序自动化以减轻这一挑战。然而,这种自动化的有效性可能取决于培训数据集的丰富性和模型效率。我们最近开发了一个名为随机车轮的新型分类师,它提供了更易解释的产出。在这项工作中,我们使用了一种强化的随机车轮,以便利对信用卡核准程序提出值得信赖的建议。它不仅提出了更准确和准确的建议,而且还提供了一种可解释的信任度措施。此外,它解释了每种信用卡申请的机器建议,以及建议信任和解释的可得性,可以使人们更加信任所提供的情报,从而提高信用卡核准程序的效率。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
116+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 每周精选:近期推荐系统论文及进展
机器学习研究会
4+阅读 · 2018年2月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 每周精选:近期推荐系统论文及进展
机器学习研究会
4+阅读 · 2018年2月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员