Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19 contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when location data are used in clear in the process. Several solutions employ Searchable Encryption (SE) to achieve secure alerts directly on encrypted locations. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting -- Hidden Vector Encryption (HVE), and propose a graph embedding technique to encode location data in a way that significantly boosts the performance of processing on ciphertexts. We show that finding the optimal encoding is NP-hard, and provide several heuristics that are fast and obtain significant performance gains. Furthermore, we investigate the more challenging case of dynamic alert zones, where the area of interest changes over time. Our extensive experimental evaluation shows that our solutions can significantly improve computational overhead compared to existing baselines.
翻译:近年来,基于位置的警报越来越受欢迎,无论是在保健(如COVID-19接触跟踪)、营销(如基于地点的广告)方面,还是在公共安全方面,无论是在保健(如COVID-19接触跟踪)、营销(如基于地点的广告)还是在公共安全方面,都越来越受欢迎。然而,当在此过程中明确使用定位数据时,就会产生严重的隐私问题。一些解决办法采用可搜索加密(SE)直接在加密地点实现安全警报。虽然这样做可以保护隐私,但所产生的性能管理费用却非常高。我们注重在公用钥匙设置中的突出的SE技术 -- -- 隐藏矢量加密(HVE),并提议一种将定位数据编码成图表的技术,以大大提升对密码处理的性能。我们表明,找到最佳编码的方法是硬硬化的,并提供一些快速和显著性能收益的超标准。此外,我们调查了较具挑战性的动态警戒区的案例,在这些区域中,兴趣随时间发生变化。我们广泛的实验评估表明,我们的解决方案可以大大改进计算间接值。