Inspired by real-world applications such as the assignment of pupils to schools or the allocation of social housing, the one-sided matching problem studies how a set of agents can be assigned to a set of objects when the agents have preferences over the objects, but not vice versa. For fairness reasons, most mechanisms use randomness, and therefore result in a probabilistic assignment. We study the problem of decomposing these probabilistic assignments into a weighted sum of ex-post (Pareto-)efficient matchings, while maximizing the worst-case number of assigned agents. This decomposition preserves all the assignments' desirable properties, most notably strategy-proofness. For a specific class of probabilistic assignments, including the assignment by the Probabilistic Serial mechanism, we propose a polynomial-time algorithm for this problem that obtains a decomposition in which all matchings assign at least the expected number of assigned agents by the probabilistic assignment, rounded down, thus achieving the theoretically best possible guarantee. For general probabilistic assignments, the problem becomes NP-hard. For the Random Serial Dictatorship mechanism, we show that the worst-case number of assigned agents is at least half of the optimal, and that this bound is asymptotically tight. Lastly, we propose a column generation framework for the introduced problem, which we evaluate both on randomly generated data, and on real-world school choice data from the Belgian cities Antwerp and Ghent.
翻译:在现实应用的启发下,比如将学生分配到学校或分配社会住房,单向匹配问题研究如何将一组物剂分配到一组物体,如果物剂对对象有偏好,而不是反之。出于公平的原因,大多数机制使用随机性,从而导致一种概率性任务。我们研究将这些杂交性任务分解成一个加权总和的问题,例如将学生分配到学校或分配社会住房,这种单向匹配问题研究如何使一组物剂在物剂对对象有偏好时被分配到一组物体上。对于一种特定的概率性任务类别,包括概率性序列机制的指派,我们建议为这一问题采用一种混合时间算法,在这种算法中,所有匹配至少分配到一个预期的外派物剂数量,在四舍四舍五入后,从而实现理论上最好的保证。对于一般性稳定性任务来说,问题就成了最难处理的特性,最突出的就是战略防腐蚀性战略性任务。对于一个特定类别,即随机的Sirbirial Dictatratical Streal机制,我们提出一个最差的代为最难的内置的内置的内置的一列。