This paper analyzes the graph embedding method introduced in \cite{Qiu_Recipe}, which is a bind-and-sum approach using spherical codes and the tensor product to represent the edge set of a graph. We compare our spherical/tensor method to similar methods, and in particular we examine the competing scheme of Rademacher codes paired with the Hadamard product. We show that the while the Hadamard product doesn't increase the dimension like the tensor product, it suffers a proportional penalty in the number of edges it can accurately store in superposition. In fact, the memory capacity ratio of the Rademacher/Hadmard scheme is the same as the spherical/tensor scheme, and so there is no true memory savings when using the Hadamard and its related binding operations. We present some experimental results confirming our theoretical ones and show that while on the surface our method might require more parameters than competing methods, in reality it has the same efficiency.
翻译:本文分析了在\ cite ⁇ iu_ recipe} 中引入的图形嵌入方法, 这是使用球形码和高压产品代表图表边缘的捆绑和总和方法。 我们比较了我们的球形/ 高压方法与类似方法, 特别是我们研究了与Hadamard 产品配对的Rademacher 代码的相竞方案。 我们显示, 虽然Hadmard 产品没有增加像 Exronor 产品那样的维度, 但是它却在它能够准确存储于超级位置的边缘数量上受到一定的处罚。 事实上, Rademacher/ Hadmard 方案的内存能力比与 球形/ tensor 方案相同, 因此在使用 Hadamard 及其相关的捆绑操作时没有真正的内存节余。 我们提出一些实验结果来证实我们的理论, 并表明, 在表面我们的方法可能需要比竞争方法更多的参数, 实际上它具有同样的效率 。