To facilitate effective, safe deployment in the real world, individual robots must reason about interactions with other agents, which often occur without explicit communication. Recent work has identified game theory, particularly the concept of Nash Equilibrium (NE), as a key enabler for behavior-aware decision-making. Yet, existing work falls short of fully unleashing the power of game-theoretic reasoning. Specifically, popular optimization-based methods require simplified robot dynamics and tend to get trapped in local minima due to convexification. Other works that rely on payoff matrices suffer from poor scalability due to the explicit enumeration of all possible trajectories. To bridge this gap, we introduce Game-Theoretic Nested Search (GTNS), a novel, scalable, and provably correct approach for computing NEs in general dynamical systems. GTNS efficiently searches the action space of all agents involved, while discarding trajectories that violate the NE constraint (no unilateral deviation) through an inner search over a lower-dimensional space. Our algorithm enables explicit selection among equilibria by utilizing a user-specified global objective, thereby capturing a rich set of realistic interactions. We demonstrate the approach on a variety of autonomous driving and racing scenarios where we achieve solutions in mere seconds on commodity hardware.
翻译:为实现真实世界中有效且安全的部署,单个机器人必须对其他智能体的交互行为进行推理,这类交互通常在没有显式通信的情况下发生。近期研究指出博弈论,尤其是纳什均衡(NE)概念,是实现行为感知决策的关键使能技术。然而,现有研究尚未充分发挥博弈论推理的潜力。具体而言,当前主流的基于优化的方法需要简化机器人动力学模型,且因凸化处理易陷入局部极小值;而依赖收益矩阵的其他方法则因需显式枚举所有可能轨迹而面临可扩展性不足的问题。为弥补这一空白,我们提出博弈论嵌套搜索(GTNS)——一种新颖、可扩展且可证明正确的通用动力学系统纳什均衡计算方法。GTNS通过对所有参与智能体的动作空间进行高效搜索,同时在低维空间内层搜索中剔除违反纳什均衡约束(无单边偏离)的轨迹。该算法利用用户指定的全局目标函数实现均衡解的显式选择,从而能够捕捉丰富多样的现实交互场景。我们在多种自动驾驶与竞速场景中验证了该方法,在商用硬件上仅需数秒即可获得解决方案。