In this paper, we introduce DA$^2$, the first large-scale dual-arm dexterity-aware dataset for the generation of optimal bimanual grasping pairs for arbitrary large objects. The dataset contains about 9M pairs of parallel-jaw grasps, generated from more than 6000 objects and each labeled with various grasp dexterity measures. In addition, we propose an end-to-end dual-arm grasp evaluation model trained on the rendered scenes from this dataset. We utilize the evaluation model as our baseline to show the value of this novel and nontrivial dataset by both online analysis and real robot experiments. All data and related code will be open-sourced at https://sites.google.com/view/da2dataset.
翻译:在本文中,我们介绍DA$2$,这是为任意大型天体生成最佳双人手抓网配对的第一个大型双型双臂宽度数据集。该数据集包含大约9M对平行抓网,由6000多个天体生成,每个标有各种抓网宽度措施的标签。此外,我们提议了一个端对端双臂抓网评价模型,就从该数据集提供的场景进行培训。我们利用评价模型作为我们的基线,通过在线分析和真正的机器人实验,显示这一新颖和非三角数据集的价值。所有数据和相关代码将在https://sites.google.com/view/da2dataset上公开提供。