Businesses and customers can gain valuable information from product reviews. The sheer number of reviews often necessitates ranking them based on their potential helpfulness. However, only a few reviews ever receive any helpfulness votes on online marketplaces. Sorting all reviews based on the few existing votes can cause helpful reviews to go unnoticed because of the limited attention span of readers. The problem of review helpfulness prediction is even more important for higher review volumes, and newly written reviews or launched products. In this work we compare the use of RoBERTa and XLM-R language models to predict the helpfulness of online product reviews. The contributions of our work in relation to literature include extensively investigating the efficacy of state-of-the-art language models -- both monolingual and multilingual -- against a robust baseline, taking ranking metrics into account when assessing these approaches, and assessing multilingual models for the first time. We employ the Amazon review dataset for our experiments. According to our study on several product categories, multilingual and monolingual pre-trained language models outperform the baseline that utilizes random forest with handcrafted features as much as 23% in RMSE. Pre-trained language models reduce the need for complex text feature engineering. However, our results suggest that pre-trained multilingual models may not be used for fine-tuning only one language. We assess the performance of language models with and without additional features. Our results show that including additional features like product rating by the reviewer can further help the predictive methods.


翻译:商业和客户可以从产品审查中获得宝贵的信息。 数量众多的审查往往要求根据潜在帮助性对其进行排序。 然而,只有少数审查在网上市场得到过任何帮助性投票。 根据少数现有票数对所有审查进行分类,可能导致有益的审查被忽略,因为读者的注意力范围有限。 审评的帮助性预测问题对于更高审查卷以及新撰写的审查或推出的产品更为重要。 在这项工作中,我们比较了RoBERTA和XLM-R语言模型的使用,以预测在线产品审查的帮助性。我们在文献方面的工作贡献包括广泛调查最新语言模式(单语和多语种)的功效,以稳健基线为基础,在评估这些方法时考虑到等级,并首次评估多语种模式。我们用亚马逊审查数据集来做实验。 根据我们对若干产品类别的研究,多语种和语言前语言模型比利用随机森林和手工艺特征的基线要快得多。 我们的语文模型在RIPERE中的贡献是23 %。 预先培训的语言模型可以降低我们使用的一种语言的精确性评估结果。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员