The evolution of MobileNets has laid a solid foundation for neural network applications on mobile end. With the latest MobileNetV3, neural architecture search again claimed its supremacy in network design. Unfortunately, till today all mobile methods mainly focus on CPU latencies instead of GPU, the latter, however, is much preferred in practice for it has faster speed, lower overhead and less interference. Bearing the target hardware in mind, we propose the first Mobile GPU-Aware (MoGA) neural architecture search in order to be precisely tailored for real-world applications. Further, the ultimate objective to devise a mobile network lies in achieving better performance by maximizing the utilization of bounded resources. Urging higher capability while restraining time consumption is not reconcilable. We alleviate the tension by weighted evolution techniques. Moreover, we encourage increasing the number of parameters for higher representational power. With 200x fewer GPU days than MnasNet, we obtain a series of models that outperform MobileNetV3 under the similar latency constraints, i.e., MoGA-A achieves 75.9% top-1 accuracy on ImageNet, MoGA-B meets 75.5% which costs only 0.5 ms more on mobile GPU. MoGA-C best attests GPU-awareness by reaching 75.3% and being slower on CPU but faster on GPU.The models and test code is made available here https://github.com/xiaomi-automl/MoGA.
翻译:移动网络的演进为移动终端的神经网络应用奠定了坚实的基础。 最新的移动网络V33 神经结构搜索再次声称其在网络设计中拥有优势。 不幸的是,直到今天为止,所有移动方法都主要侧重于控制晚期而不是GPU, 然而,后者在实践中却被普遍偏好,因为其速度更快、管理费用较低、干扰较少。 牢记目标硬件,我们提议第一次移动GPU-Aware(MoGAA)神经结构搜索,以便精确地为真实世界应用量身定制。 此外,设计移动网络的最终目标在于通过最大限度地利用受约束的资源实现更好的性能。 要求提高能力,同时限制时间消费不能调校正。 我们通过加权演化技术缓解紧张。 此外,我们鼓励增加代表能力更高的参数数量。 由于GPU-A软件比MnasNet少200倍的GPU日,我们获得一系列模型,在类似液压模型下,即MOGGA-A在图像网络上达到75.9%的顶级/高级精确度。 MoGA-B在GPO- 测试规则上达到0.5的0.5比GPUGGGPI(GPI/C) 达到GPI) 标准成本只有0.5比0.5。