Eisenstein-Jacobi (EJ) networks were proposed as an efficient interconnection network topology for parallel and distributed systems. They are based on Eisenstein-Jacobi integers modulo $a = a+b\rho$, where $0 \leq a \leq b$, and they are 6-regular symmetric networks and considered as a generalization of hexagonal networks. Most of the interconnection networks are modeled as graphs where the applications and functions of graph theory could be applied to. The cycles in a graph are one type of communications in interconnection networks that are considered as a factor to measure the efficiency and reliability of the networks' topology. The network is said to be panconnected if there are cycles of length $l$ for all $l = D(u, v), D(u, v)+1, D(u, v)+2, \dots, n-1$ where $D(u, v)$ is the shortest distance between nodes $u$ and $v$ in a given network. In this paper, we investigate the panconnectivity problem in Eisenstein-Jacobi networks. The proposed algorithm constructs and proves the panconnectivity of a given Eisenstein-Jacobi network and its complexity is $O(n^4)$. Simulation results are given to support the correctness of this work.
翻译:Eisenstein-Jacobi (EJ) 网络是作为平行和分布式系统的一种高效互连网络表层,建议作为平行和分布式系统的一种高效互连网络表层,其基础是Eisenstein-Jacobi 整数网络,以Eisenstein-Jacobi 整数网络美元= a+b\rho$, 美元= a+b\rho$, 美元= a+b\leq a\leq a\leq a\leq b$, 它们是6个常规对称网络,被认为是六种常规的对称网络,被认为是六种对称网络的概括。大多数互连网以图表为模型,其中可以应用图形理论的应用和功能。 图表中的周期是互联网络中的一种通信类型,被视为衡量网络表层结构效率与可靠性的一个要素。 据说如果所有美元=Du, Du, v), Du, v)+1, Du, v)+2, +2,, \dots, n-1美元, 的模型, 其中的模型, 其中将使用图理学理论理论理论应用。 $u, $ 和 $ $bion 的周期是某网络中的一种通信网络中的一种通信, 我们调查Eismisionaln-commusinionalmionalmusionalmismismismismusionalmismus, ex ex ex ex ex ex ex ex efilmus ex ex e e, e.