Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
翻译:大规模多样化数据集对于训练鲁棒的机器人操作策略至关重要,然而现有数据收集方法难以在规模、多样性和质量之间取得平衡。仿真方法虽具可扩展性,但存在仿真到现实的差距;遥操作能产生高质量演示,但多样性有限且人力成本高昂。我们提出FieldGen,一种场引导数据生成框架,能以最少的人工监督实现可扩展、多样化且高质量的真实世界数据收集。FieldGen将操作分解为两个阶段:允许轨迹多样性的预操作阶段,以及需要专家精度的精细操作阶段。人类演示捕获关键接触和姿态信息,随后吸引力场自动生成收敛至成功配置的多样化轨迹。这种解耦设计结合了可扩展的轨迹多样性与精确监督。此外,FieldGen-Reward通过奖励标注增强生成数据,以进一步提升策略学习效果。实验表明,与基于遥操作的基线方法相比,使用FieldGen训练的策略实现了更高的成功率和改进的稳定性,同时显著减少了长期真实世界数据收集中的人力投入。项目网页详见 https://fieldgen.github.io/。