In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policymaking could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.
翻译:在这项工作中,我们展示了如何通过在现有流行病学模型中进行推断,使传染病控制决策过程的某些部分自动化。所进行的推断任务包括:通过直接决策选择、模拟模型参数的模拟模型参数,对可控制范围的后方分布进行计算,从而产生可接受的疾病演变结果。除其他外,我们举例说明了在现有模拟器中自动推断的概率性编程语言的使用。无论是这一自动推断工具的全部能力,还是其用于规划的效用,目前都没有广泛传播。及时了解了如何使用这种模拟模型和支持决策的推论自动化工具,可能会导致经济损害较小的政策处方,特别是在目前的COVID-19大流行期间。