Modeling fuzziness and imprecision in human rating data is a crucial problem in many research areas, including applied statistics, behavioral, social, and health sciences. Because of the interplay between cognitive, affective, and contextual factors, the process of answering survey questions is a complex task, which can barely be captured by standard (crisp) rating responses. Fuzzy rating scales have progressively been adopted to overcome some of the limitations of standard rating scales, including their inability to disentangle decision uncertainty from individual responses. The aim of this article is to provide a novel fuzzy scaling procedure which uses Item Response Theory trees (IRTrees) as a psychometric model for the stage-wise latent response process. In so doing, fuzziness of rating data is modeled using the overall rater's pattern of responses instead of being computed using a single-item based approach. This offers a consistent system for interpreting fuzziness in terms of individual-based decision uncertainty. A simulation study and two empirical applications are adopted to assess the characteristics of the proposed model and provide converging results about its effectiveness in modeling fuzziness and imprecision in rating data.


翻译:模拟人类评级数据的模糊性和不精确性是许多研究领域的一个关键问题,包括应用统计、行为学、社会学和健康科学。由于认知、感知和背景因素之间的相互作用,回答调查问题的过程是一项复杂的任务,几乎无法用标准(crisp)评级答复来捕捉。采用模糊的评级尺度是为了克服标准评级尺度的某些局限性,包括无法将决定不确定性与个别答复相混淆。本条的目的是提供一个新的模糊性缩放程序,利用项目反应理论树(IRTrees)作为阶段性潜在响应过程的心理计量模型。在这样做时,评级数据的模糊性是使用总体评级人的答复模式而不是使用单一项目为基础的方法来模拟而不是计算。这为解释基于个人决定不确定性的模糊性提供了一个一致的系统。采用了模拟研究和两种经验应用来评估拟议模型的特性,并提供关于其在模拟模糊性和评级数据不精确性方面的有效性的一致结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
124+阅读 · 2020年9月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员