Ontologies play a central role in structuring knowledge across domains, supporting tasks such as reasoning, data integration, and semantic search. However, their large size and complexity, particularly in fields such as biomedicine, computational biology, law, and engineering, make them difficult for non-experts to navigate. Formal query languages such as SPARQL offer expressive access but require users to understand the ontology's structure and syntax. In contrast, visual exploration tools and basic keyword-based search interfaces are easier to use but often lack flexibility and expressiveness. We introduce FuzzyVis, a proof-of-concept system that enables intuitive and expressive exploration of complex ontologies. FuzzyVis integrates two key components: a fuzzy logic-based querying model built on fuzzy ontology embeddings, and an interactive visual interface for building and interpreting queries. Users can construct new composite concepts by selecting and combining existing ontology concepts using logical operators such as conjunction, disjunction, and negation. These composite concepts are matched against the ontology using fuzzy membership-based embeddings, which capture degrees of membership and support approximate, concept-level similarity search. The visual interface supports browsing, query composition, and partial search without requiring formal syntax. By combining fuzzy semantics with embedding-based reasoning, FuzzyVis enables flexible interpretation, efficient computation, and exploratory learning. Case studies demonstrate how FuzzyVis supports subtle information needs and helps users uncover relevant concepts in large, complex ontologies.
翻译:本体在跨领域知识结构化中扮演核心角色,支持推理、数据集成和语义搜索等任务。然而,其庞大的规模与复杂性(尤其在生物医学、计算生物学、法律和工程等领域)使得非专家用户难以有效导航。SPARQL等形式化查询语言虽能提供丰富的表达能力,但要求用户理解本体的结构与语法。相比之下,可视化探索工具与基于关键词的基础搜索界面更易使用,但通常缺乏灵活性与表达力。本文介绍FuzzyVis——一个支持对复杂本体进行直观且富有表达力探索的概念验证系统。FuzzyVis整合了两个关键组件:基于模糊本体嵌入构建的模糊逻辑查询模型,以及用于构建和解释查询的交互式可视化界面。用户可通过选择现有本体概念并使用合取、析取、否定等逻辑运算符进行组合,从而构建新的复合概念。这些复合概念通过基于模糊隶属度的嵌入与本体进行匹配,该嵌入能捕获隶属度并支持近似、概念级的相似性搜索。可视化界面支持浏览、查询组合及部分搜索功能,无需用户掌握形式化语法。通过将模糊语义与基于嵌入的推理相结合,FuzzyVis实现了灵活解释、高效计算和探索性学习。案例研究表明,FuzzyVis能够支持精细化的信息需求,并帮助用户在大型复杂本体中发现相关概念。