Algorithmic derivatives can be useful to quantify uncertainties and optimize parameters using computer simulations. Whether they actually are, depends on how "well-linearizable" the program is. Proton computed tomography (pCT) is a medical imaging technology with the potential to increase the spatial accuracy of the dose delivered in proton-beam radiotherapy. The Bergen pCT collaboration is developing and constructing a digital tracking calorimeter (DTC) to measure the position, direction and energy of protons after they passed through a patient, and a software pipeline to process these data into a pCT image. We revisit the software pipeline from the perspective of algorithmic differentiation (AD). In the early subprocedures, several obstacles such as discrete variables or frequent discontinuities were identified, and are probably tackled best by using surrogate models. The model-based iterative reconstruction (MBIR) subprocedure in the end seems to be AD-ready, and we propose changes in the AD workflow that can reduce the memory consumption in reverse mode.
翻译:使用计算机模拟来量化不确定性和优化参数。 是否真的可以, 取决于程序是如何“ 完全线性化 ” 。 质子计算断层摄影是一种医学成像技术, 有可能提高质子波辐射疗法所提供剂量的空间准确性。 卑尔根 PCT合作正在开发和建造一个数字跟踪卡路里( DTC ), 以测量质子经过病人后的位置、 方向和能量, 以及将这些数据处理成 pCT 图像的软件管道。 我们从算法差异的角度( AD) 重新审视软件管道。 在早期的子程序中, 发现了一些障碍, 如离散变量或频繁的不连续性, 并且很可能通过使用代孕模型来最佳地解决这些障碍。 以模型为基础的迭代重建( MBIR) 最终的子程序似乎已经准备就绪, 我们建议对AD工作流程进行修改, 以降低反向模式的记忆消耗量。