Leading methods in the domain of action recognition try to distill information from both the spatial and temporal dimensions of an input video. Methods that reach State of the Art (SotA) accuracy, usually make use of 3D convolution layers as a way to abstract the temporal information from video frames. The use of such convolutions requires sampling short clips from the input video, where each clip is a collection of closely sampled frames. Since each short clip covers a small fraction of an input video, multiple clips are sampled at inference in order to cover the whole temporal length of the video. This leads to increased computational load and is impractical for real-world applications. We address the computational bottleneck by significantly reducing the number of frames required for inference. Our approach relies on a temporal transformer that applies global attention over video frames, and thus better exploits the salient information in each frame. Therefore our approach is very input efficient, and can achieve SotA results (on Kinetics dataset) with a fraction of the data (frames per video), computation and latency. Specifically on Kinetics-400, we reach 78.8 top-1 accuracy with $\times 30$ less frames per video, and $\times 40$ faster inference than the current leading method. Code is available at: https://github.com/Alibaba-MIIL/STAM
翻译:行动识别领域的主要方法试图从输入视频的空间和时间层面提取信息。 到达艺术状态( SotA)准确度的方法,通常使用3D演动层,作为从视频框中抽取时间信息的一种方式。 使用这种演动需要从输入视频中取样短片, 每一短片都是一个仔细抽样的框。 由于每个短片覆盖输入视频的一小部分, 多个短片被抽样推断, 以覆盖整个视频的时间长度。 这导致计算负荷增加, 对现实世界应用来说不切实际。 我们解决计算瓶颈问题的方法是大幅减少用于推断所需的框架数量。 我们的方法依赖于一个时间变压器, 将全球注意力运用在视频框上, 从而更好地利用每个框中的突出信息。 因此, 我们的方法非常高效, 并且能够实现SotA结果( 肯亚茨数据库), 并有一部分数据( 每部视频框架) 、 计算和 latency 。 具体地说, Kinitical$- 400, 我们用78.8 最快的 AS AS AS AS_ 40 。