Location information claimed by devices will play an ever-increasing role in future wireless networks such as 5G, the Internet of Things (IoT). Against this background, the verification of such claimed location information will be an issue of growing importance. A formal information-theoretic Location Verification System (LVS) can address this issue to some extent, but such a system usually operates within the limits of idealistic assumptions on a-priori information on the proportion of genuine users in the field. In this work we address this critical limitation by using a Neural Network (NN) showing how such a NN based LVS is capable of efficiently functioning even when the proportion of genuine users is completely unknown a-priori. We demonstrate the improved performance of this new form of LVS based on Time of Arrival measurements from multiple verifying base stations within the context of vehicular networks, quantifying how our NN-LVS outperforms the stand-alone information-theoretic LVS in a range of anticipated real-world conditions. We also show the efficient performance for the NN-LVS when the users' signals have added Non-Line-of-Site (NLoS) bias in them. This new LVS can be applied to a range of location-centric applications within the domain of the IoT.


翻译:在这种背景下,核实这种声称的定位信息将是一个日益重要的问题。一个正式的信息理论位置核查系统(LVS)可以在某种程度上解决这个问题,但这种系统通常在理想假设的范围内运作,其首要条件是关于实地真正用户比例的信息。在这项工作中,我们通过一个神经网络(NN)来解决这一关键限制,显示这样一个以NNE为基础的LSS如何能够有效运作,即使真正的用户比例是完全不为人知的优先。我们展示了这种新型的LVS的性能,这种新型的LVS的性能,其依据是来自多个基站的抵达时间的测量结果,是在电视网络范围内进行的,以量化我们的NNE-LVS如何在一系列预期现实世界条件下超越独立的信息-理论LVS。我们还展示了NNNLVS的高效性性能,因为用户的信号在新的LVS域域域域域域内应用了这种非LVS的偏差位置。

0
下载
关闭预览

相关内容

LVS (Linux虚拟服务器) LVS集群采用IP负载均衡技术和基于内容请求分发技术。调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器。整个服务器集群的结构对客户是透明的,而且无需修改客户端和服务器端的程序。为此,在设计时需要考虑系统的透明性、可伸缩性、高可用性和易管理性。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员