Carrier aggregation (CA) is a technique that allows mobile networks to combine multiple carriers to increase user data rate. On the uplink, for power constrained users, this translates to the need for an efficient resource allocation scheme, where each user distributes its available power among its assigned uplink carriers. Choosing a good set of carriers and allocating appropriate power on the carriers is important. If the carrier allocation on the uplink is such that a harmonic of a user's uplink carrier falls on the downlink frequency of that user, it leads to a self coupling-induced sensitivity degradation of that user's downlink receiver. In this paper, we model the uplink carrier aggregation problem as an optimal resource allocation problem with the associated constraints of non-linearities induced self interference (SI). This involves optimization over a discrete variable (which carriers need to be turned on) and a continuous variable (what power needs to be allocated on the selected carriers) in dynamic environments, a problem which is hard to solve using traditional methods owing to the mixed nature of the optimization variables and the additional need to consider the SI constraint. We adopt a reinforcement learning (RL) framework involving a compound-action actor-critic (CA2C) algorithm for the uplink carrier aggregation problem. We propose a novel reward function that is critical for enabling the proposed CA2C algorithm to efficiently handle SI. The CA2C algorithm along with the proposed reward function learns to assign and activate suitable carriers in an online fashion. Numerical results demonstrate that the proposed RL based scheme is able to achieve higher sum throughputs compared to naive schemes. The results also demonstrate that the proposed reward function allows the CA2C algorithm to adapt the optimization both in the presence and absence of SI.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员