Over the years, the popularity and usage of wearable Internet of Things (IoT) devices in several healthcare services are increased. Among the services that benefit from the usage of such devices is predictive analysis, which can improve early diagnosis in e-health. However, due to the limitations of wearable IoT devices, challenges in data privacy, service integrity, and network structure adaptability arose. To address these concerns, we propose a platform using federated learning and private blockchain technology within a fog-IoT network. These technologies have privacy-preserving features securing data within the network. We utilized the fog-IoT network's distributive structure to create an adaptive network for wearable IoT devices. We designed a testbed to examine the proposed platform's ability to preserve the integrity of a classifier. According to experimental results, the introduced implementation can effectively preserve a patient's privacy and a predictive service's integrity. We further investigated the contributions of other technologies to the security and adaptability of the IoT network. Overall, we proved the feasibility of our platform in addressing significant security and privacy challenges of wearable IoT devices in predictive healthcare through analysis, simulation, and experimentation.
翻译:多年来,若干医疗保健服务机构对可磨损的互联网(IoT)装置的普及和使用率有所提高,从使用这种装置中受益的服务包括预测性分析,这可以改善电子保健方面的早期诊断;然而,由于可磨损的IoT装置的局限性,数据隐私、服务完整性和网络结构适应性等方面的挑战,多年来,出现了这些问题;为解决这些关切,我们提议在雾-IoT网络内使用一个平台,利用联合学习和私人阻塞技术。这些技术具有保护网络内数据的隐私功能。我们利用雾-IoT网络的分配结构,为可磨损的IoT装置建立一个适应性网络。我们设计了一个测试台,以检查拟议平台维护分类器完整性的能力。根据实验结果,引入的安装可以有效地保护病人的隐私和预测服务的完整性。我们进一步调查了其他技术对IoT网络的安全和适应性的贡献。总体而言,我们证明了我们的平台在通过模拟、模拟和预测性健康中处理可磨损性IoT装置的重大安全和隐私挑战方面的可行性。