Knowledge graph embedding methods are important for knowledge graph completion (link prediction) due to their robust performance and efficiency on large-magnitude datasets. One state-of-the-art method, PairRE, leverages two separate vectors for relations to model complex relations (i.e., 1-to-N, N-to-1, and N-to-N) in knowledge graphs. However, such a method strictly restricts entities on the hyper-ellipsoid surface and thus limits the optimization of entity distribution, which largely hinders the performance of knowledge graph completion. To address this problem, we propose a novel score function TransHER, which leverages relation-specific translations between head and tail entities restricted on separate hyper-ellipsoids. Specifically, given a triplet, our model first maps entities onto two separate hyper-ellipsoids and then conducts a relation-specific translation on one of them. The relation-specific translation provides TransHER with more direct guidance in optimization and the ability to learn semantic characteristics of entities with complex relations. Experimental results show that TransHER can achieve state-of-the-art performance and generalize to datasets in different domains and scales. All our code will be publicly available.
翻译:知识图嵌入方法对于知识图的完成(链接预测)十分重要,因为它们在大型磁性数据集上表现良好,效率高。一个最先进的方法,PairRE,利用两个不同的矢量来建立知识图中复杂关系模型(即1至N、N至1和N至N)的关系。然而,这种方法严格限制了超阴性表面的实体,从而限制了实体分布的优化,这在很大程度上阻碍了知识图的完成。为了解决这个问题,我们提议了一个新型的评分函数 Transher,它利用了限制在单独超利球体上的头部和尾部实体之间的特定关系翻译。具体地说,考虑到一个三重,我们的模型第一个实体将两个不同的超利球体上映出,然后对其中的一个实体进行特定的翻译。具体关联翻译在优化方面为Transher提供了更直接的指导,并提供了学习复杂关系实体的语义特征的能力。实验结果表明,Transher可以实现不同域的状态性能和通用的代码。