Sign Language Production (SLP) aims to generate sign videos corresponding to spoken language sentences, where the conversion of sign Glosses to Poses (G2P) is the key step. Due to the cross-modal semantic gap and the lack of word-action correspondence labels for strong supervision alignment, the SLP suffers huge challenges in linguistics-vision consistency. In this work, we propose a Transformer-based Linguistics-Vision Monotonic Consistent Network (LVMCN) for SLP, which constrains fine-grained cross-modal monotonic alignment and coarse-grained multimodal semantic consistency in language-visual cues through Cross-modal Semantic Aligner (CSA) and Multimodal Semantic Comparator (MSC). In the CSA, we constrain the implicit alignment between corresponding gloss and pose sequences by computing the cosine similarity association matrix between cross-modal feature sequences (i.e., the order consistency of fine-grained sign glosses and actions). As for MSC, we construct multimodal triplets based on paired and unpaired samples in batch data. By pulling closer the corresponding text-visual pairs and pushing apart the non-corresponding text-visual pairs, we constrain the semantic co-occurrence degree between corresponding gloss and pose sequences (i.e., the semantic consistency of coarse-grained textual sentences and sign videos). Extensive experiments on the popular PHOENIX14T benchmark show that the LVMCN outperforms the state-of-the-art.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
13+阅读 · 2017年12月5日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员