Trajectory representation learning (TRL) aims to encode raw trajectory data into low-dimensional embeddings for downstream tasks such as travel time estimation, mobility prediction, and trajectory similarity analysis. From a behavioral perspective, a trajectory reflects a sequence of route choices within an urban environment. However, most existing TRL methods ignore this underlying decision-making process and instead treat trajectories as static, passive spatiotemporal sequences, thereby limiting the semantic richness of the learned representations. To bridge this gap, we propose CORE, a TRL framework that integrates context-aware route choice semantics into trajectory embeddings. CORE first incorporates a multi-granular Environment Perception Module, which leverages large language models (LLMs) to distill environmental semantics from point of interest (POI) distributions, thereby constructing a context-enriched road network. Building upon this backbone, CORE employs a Route Choice Encoder with a mixture-of-experts (MoE) architecture, which captures route choice patterns by jointly leveraging the context-enriched road network and navigational factors. Finally, a Transformer encoder aggregates the route-choice-aware representations into a global trajectory embedding. Extensive experiments on 4 real-world datasets across 6 downstream tasks demonstrate that CORE consistently outperforms 12 state-of-the-art TRL methods, achieving an average improvement of 9.79% over the best-performing baseline. Our code is available at https://github.com/caoji2001/CORE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员