Ultra-reliable short-packet communication is a major challenge in future wireless networks with critical applications. To achieve ultra-reliable communications beyond 99.999%, this paper envisions a new interaction-based communication paradigm that exploits feedback from the receiver. We present AttentionCode, a new class of feedback codes leveraging deep learning (DL) technologies. The underpinnings of AttentionCode are three architectural innovations: AttentionNet, input restructuring, and adaptation to fading channels, accompanied by several training methods, including large-batch training, distributed learning, look-ahead optimizer, training-test signal-to-noise ratio (SNR) mismatch, and curriculum learning. The training methods can potentially be generalized to other wireless communication applications with machine learning. Numerical experiments verify that AttentionCode establishes a new state of the art among all DL-based feedback codes in both additive white Gaussian noise (AWGN) channels and fading channels. In AWGN channels with noiseless feedback, for example, AttentionCode achieves a block error rate (BLER) of $10^{-7}$ when the forward channel SNR is 0 dB for a block size of 50 bits, demonstrating the potential of AttentionCode to provide ultra-reliable short-packet communications.
翻译:超可靠短片通信是未来具有关键应用的无线网络的一大挑战。为了实现99.999%以上的超可靠通信,本文件设想了一种新的基于互动的通信模式,利用接收者的反馈。我们介绍了利用深层学习(DL)技术的新型反馈代码 " 注意code " 。 " 注意Code " 的基础是三个建筑创新:注意网络、输入重组和适应淡化渠道,辅之以若干培训方法,包括大批培训、分布式学习、外观优化器、培训测试信号对噪音比率(SNR)不匹配和课程学习。培训方法有可能通过机器学习推广到其他无线通信应用程序。 " 注意Code " 核实, " 注意Code " 在所有基于DL的反馈代码中确立了一种新状态,既包括添加白高音频道(AWGN)的频道和淡化频道。在无噪音反馈的AWGN频道中,例如,当前SNR频道提供50-7美元的短错误率率率(LLER)时,S-movero develyal dli roforpal 10-pal-pal lax latistrax dress dli-d-portistrefors mess 0.50-porstal-forstal-porticlegymol 0.50-porst-porstalsm) latime latal