In the vicinity of the liquid--vapor critical point, supercritical fluids behave strongly compressibly and, in parallel, thermophysical properties have strong state dependence. These lead to various peculiar phenomena, one of which being the piston effect where a sudden heating induces a mechanical pulse. The coupling between thermal and mechanical processes, in the linear approximation, yields a non-trivially rich thermoacoustics. The numerous applications of supercritical fluids raise the need for reliable yet fast and efficient numerical solution for thermoacoustic time and space dependence in this sensitive domain. Here, we present a second-order accurate, fully explicit staggered space-time grid finite difference method for such coupled linear thermoacoustic problems. Time integration is based on the splitting of the state space vector field representing the interactions that affect the dynamics into reversible and irreversible parts, which splitting procedure leads to decoupled wave and heat equations. The former is a hyperbolic partial differential equation, while the latter is a parabolic one, therefore, different time integration algorithms must be amalgamated to obtain a reliable, dispersion error-free, and dissipation error-free numerical solution. Finally, the thermoacoustic approximation of the supercritical piston effect is investigated via the developed method.


翻译:在液-气临界点附近,超临界流体表现出强烈的可压缩性,同时其热物理性质具有显著的状态依赖性。这些特性导致多种特殊现象,其中之一为活塞效应——即突然加热会引发机械脉冲。在线性近似下,热过程与机械过程的耦合产生了非平凡且丰富的热声学现象。超临界流体的广泛应用催生了对此敏感域内热声时空依赖关系进行可靠、快速且高效数值求解的需求。本文针对此类线性耦合热声问题,提出了一种二阶精度、完全显式的交错时空网格有限差分方法。时间积分基于将表征动力学相互作用的状态空间矢量场分解为可逆与不可逆部分,该分裂过程导致波动方程与热传导方程的解耦。前者为双曲型偏微分方程,后者为抛物型方程,因此需要融合不同的时间积分算法以获得可靠、无频散误差且无耗散误差的数值解。最后,通过所开发的方法对超临界活塞效应的热声近似进行了研究。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员