Delimited control operator shift0 exhibits versatile capabilities: it can express layered monadic effects, or equivalently, algebraic effects. Little did we know it can express lambda calculus too! We present $ \Lambda_\$ $, a call-by-value lambda calculus extended with shift0 and control delimiter \$ with carefully crafted reduction theory, such that the lambda calculus with beta and eta reductions can be isomorphically embedded into $ \Lambda_\$ $ via a right inverse of a continuation-passing style translation. While call-by-name reductions of lambda calculus can trivially simulate its call-by-value version, we show that addition of shift0 and \$ is the golden mean of expressive power that suffices to simulate beta and eta reductions while still admitting a simulation back. As a corollary, calculi $ \Lambda\mu_v $, $ \lambda_\$ $, $ \Lambda_\$ $ and $ \lambda $ all correspond equationally.
翻译:限量控制操作员转移0 显示多功能性: 它能够表达分层的月球效应, 或等效的代数效应。 我们不知道它也能表达羊羔微积分! 我们展示了$\ ambda $, 一个随叫随叫随到的羊羔微积分, 一个随到随叫随到的羊羔微分递增的美元, 以及一个精心设计的减量理论, 使带有乙型和乙型排减量的羊羔微分微分可以通过一个右转折成$\Lambda $, 美元\ lambda$, 美元\ lambda$, 美元和 美元\ lambda$, 所有的对应方程式。